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The paper describes a simple but general method for solving ‘steady-state’ 
problems involving internal gravity waves in a stably stratified liquid. Under 
the assumption that the motion is two-dimensional and that the Brunt-Vaisiila 
frequency is constant, the method is used to re-derive in a very simple way the 
solutions to problems where the boundary of the liquid is either a wedge or a 
circular cylinder. The method is then used to investigate the effect that a model 
of the continental shelf has on an incident train of internal gravity waves. 
The method involves analytic continuation in the frequency of the disturbance, 
and may well prove to be effective for other types of wave problem. 

1. Introduction and summary 
The paper describes a simple but general method for solving steady-state 

problems involving internal gravity waves in a stably stratified liquid. It will be 
assumed that the motion is two-dimensional, and that the Brunt-Viiisala 
frequency N of the stratified liquid is constant, but neither of these assumptions 
is necessary for the success of the method. 

Consider a line source of waves having the time variation exp( - iwt} in a 
stratified liquid that is bounded by certain rigid surfaces, some of which may 
extend to infinity. The resulting waves will be internal gravity ones if w < N ;  
and we wish to derive the steady-state solution for this case. The problem is 
complicated by the necessity of satisfying the Sommerfeld radiation condition, 
and, unless the boundaries are very simple, its formulation involves a number of 
coupled integral equations (Robinson 1970a,  b;  Baines 1971 a, b) .  However, 
the problem is considerably simpler when w > N ,  and here this case is considered 
first. The field equation is then elliptic, and a simple transformation in conjunc- 
tion with the powerful method of conformal representation may be used to 
derive the solution that satisfies the Sommerfeld radiation condition for many 
different sorts of boundaries. This solution will be an analytic function of w +it., 
where E is a small positive number, so that analytic continuation may be used to  
obtain the solution when w < N .  Knowing the solution for a source, we may use 
distributions of sources to solve problems in which there is an incident wave 
and/or a prescribed motion of the boundaries. 

The plan of the paper is as follows. Section 2 gives the basic equations, and the 
general procedure for determining the Green’s function. Section 3 gives details 
of the Green’s function for a wedge of stratified liquid. Only minor changes in the 
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FIGURE 1. Notation. 

method are needed to obtain the eigenfunctions instead of the Green’s function, 
and this is illustrated in $4 for the case of a circular cylinder. Section 5 describes 
an investigation of the effect that a model of the continental shelf has on an inci- 
dent train of internal gravity waves. 

2. A general method for determining the Green’s function 
We consider the two-dimensional motion of an inviscid, stably stratified 

liquid whose Brunt-Vaisala frequency N is constant, and take Cartesian axes 
Oxy in the plane of the motion, where Ox is horizontal and Oy is vertical. We 
suppose that the liquid is bounded internally by a solid cylinder whose trace in 
the Oxy plane is the closed curve C, and that there is a line source of strength 
exp { - iwt} at the point (xs, y,) which is outside C (see figure 1). A stream function 

p = $(x, y; w )  exp { - iwt) (2.1) 

(which we shall refer to as the Green’s function) exists, in terms of which the velo- 
city components (u, w )  are given by 

= -- a$ v = -  
aY ) ax * 

When w < N ,  the waves that occur will be internal gravity ones, and $will satisfy 
the hyperbolic equation 

(2.3) 
a v  w 0, - - y 2 T  = 
ay2 ax 

where 

and the boundary conditions, 

and 

where CT- = xsinp+ycosp, 
IT+ = xsinp- ycosp, 
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(Hurley 1969), and the subscripts s denote values a t  the source point. $must also 
satisfy the Sommerfeld radiation condition. 

The required solution will be of the form 

$ = f ( g + )  + s(a-), (2.9) 

where f and g are complex-valued functions. The radiation condition may be 
satisfied by replacing w in (2.1 ) and (2.4) by w + is, 8 > 0, determining the required 
solution $(x, y ;  w + is), and then taking the limit s -+ 0 of it. Physically this cor- 
responds to allowing the motion to grow gradually from zero like exp {st) (Light- 
hill 1966). To the first order in s, (2.4) becomes 

(2.10) 

and, if this expression is substituted into (2.3), it  is found that both the real and 
the imaginary parts of $ satisfy 

(2.11) 

Now (2.11) is elliptic for all real values of w ,  so that its solution $(x, y; w + is) 
will be analytic in z and y (see e.g. Bers, John & Schechter 1964, p. 136). Thus, in 
particular, analytic continuation in x and y (with s in (2.10) =# 0) may be used to  
determine those branches of the logarithms in (2.6) that are appropriate to the 
various regions of the Oxy plane. Also, $(z, y ;  w ) ,  being the response of the system 
to a disturbance having frequency w,  has the nature of a Fourier transform, 
and may therefore be expected to be an analytic function of the complex variable 
w+is  (see e.g. Carrier, Krook & Pearson 1966, p. 301). However, a, rigorous 
proof that this is so in the general case is not needed, because, for any particular 
problem, we shall determine $(x, y; w + is) explicitly, and its analyticity in w + is 
will be apparent. Thus, in particular, it  is clear that analytic continuation in w 
may be used to derive the solution of (2.11) for the case w > N from the solution 
for the case w < N ,  and conversely. 

Now, if we replace w by w + i s  in (2.3)-(2.9), let w take values greater than N 
and then take the limit e + 0, we obtain the following results: 

N2 
becomes -iawherea2 = 1-- 

w2 ’ (2.12) 

0 w 
u- becomes - (x - icty), a; becomes - (x + iay) ,  (2.13) N N 

and 

Finally 

tan-l { - near x,, ys. 
1 

(2.6)becomes $ - -- 
277 

(2.9) becomes $ =f*  (;r$) - +g* ((;:z)&) 2 

(2.14) 

(2.15) 

(2.16) 
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where f * and g* are the functions of the arguments shown that result from the 
analytic continuation of (2.9). I n  general, f* will not be the same function as f, 
and g* will not be the same function as g. 

Putting 
x’ = x/u, y’ = y 

transforms (2.14), (2.15) and (2.5) to 

(2.17) 

(2.18) 

(2.19) 

and $ =  0 on C’ (2.20) 

respectively, where C’ is the curve in the Ox’y’ plane into which the curve C maps 
under the transformation (2.17). 

The problem of determining $ so that it satisfies (2.18)-(2.20) is simply that 
of determining the potential flow due to a unit line source a t  (xi, yi) in the presence 
of the solid boundary C’, and may be carried out in many cases by using confor- 
mal representation. Letzthe complex velocity potential of the motion in the x’, y‘ 
plane be w(x‘ + iy’), so that (Milne-Thomson 1949, 95.14) 

i 
2 

$ = - - (w(x’ + iy’) - W(x’ - iy’)} (2.21) 

= -y+++--)], x + iuy 
x - iay 

2 
(2.22) 

using (2.17). 
Since for a given w there is a unique way of expressing 9 in the form (2.21), 

a comparison of (2.22) with (2.16) shows that we have succeeded in determining f * 
and g* uniquely. 

Hence, to obtain the solution to the boundary-value problem posed by (2.3)- 
(2.8), we have merely to obtain the solution (2.21) to a simple potential flow 
problem, and then carry out in reverse the analytic continuation procedure 
described above, to obtain the desired solution (2.9). The radiation condition 
will be satisfied if the branches of the many-valued functions f and g are deter- 
mined by replacing w by w + k,  carrying out analytic continuation in x and y and 
then taking the limit E + O .  We illustrate the method by considering the following 
examples. 

3. Source in a wedge 
Consider a source in the wedge of stratified liquid shown in figure 2. The face 

O A  of the wedge coincides with the Ox axis and the face O B  is inclined at an angle 
0, t o  it. 8, may have any value between 0 and 27r. 

As explained in $2,  we f i s t  consider the case when w > N .  The transformation 
(2.17) maps the wedge in the Oxy plane into one in the Ox‘y‘ plane having an 

(3.1) 
angle of 0; = tan-1 (a  tand,), 
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FIGURE 2 .  Source in wedge of stratified liquid. 

and maps the source point to the point. 

x' = xs/a, y' = ys. (3.2) 

By mapping the wedge-shaped region of the 2' ( = x' + iy ')  plane onto the upper 
half of the 2'' plane by means of the transformation 

2" = Z'n/e; 9 (3.3) 

we find that the complex velocity potential of the motion due to a unit source at  
the point (.,/a, y,) in the 2' plane is 

(3.4) 
1 

2n 
w =  -- log{(Z"-Z,") (Z"-Z,")), 

where the overbar denotes complex conjugate. Equations (2.21), (3.3) and (3.4) 
give 

(3.5) 

Equations (3.5), (3.1) and(2.17)give$in termsofx,yandB,forthecasew > N .  
Equations (2.13), (2.17) and (3.1) show that, to carry out theanalytic continua- 

tion to determine the solution when o < N ,  we replace 

(3.6) 

where 

and the subscript B denotes values at  any point on the face O B  of the wedge (see 
figure 2 ) .  Hence 

(3.9) 
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Equation (3.9) agrees with Hurley (1970, (3.11)) if a minor error in the latter is 
corrected: the 8 in the denominator should be replaced by a 4. This error does not 
affect the subsequent analysis described therein. 

4. Eigenfunctions for a circular cylinder 
Consider a circular cylinder of radius a,  whose surface is executing small oscil- 

lations with time variation exp( - iwt] .  The stream function for the motion outside 
the cylinder will be of the form (2.1), and must satisfy the radiation condition 
and also the boundary condition 

qh = F(0)  on x = acos19, y = asin8, (4.1) 

where F is some function that depends on the nature of the oscillations. 

and, by using the Joukowski transformation 
When o > N ,  (2.17) maps the circle x2 + y2 = a2 into an ellipse in the 2' plane, 

i t  may readily be shown that the most general form for @, that represents motions 
in which the fluid velocities decay at  large distances, is 

m m 

qh = a. log Z" + c an Z"-n + log 2" + Z"-n. (4.3) 
n = l  n=l 

Using the results of $2, it  is found that the analytic continuation of (4.3) for 
w < Nis 

m 

$ =  C0log (2 -+ [2 - - I  17 + n=l c, (a g++ [a.  ""-1 I"-" 
4 -n 

+ a 0 1 o g ( ~ + [ $ - 1 ] ~ ) +  ,=l : d,(>+[$- l ] )  , (4.4) 

with [gE/a2- 114 and [v$/a2- 114 taking the values shown in figures 3 and 4. 
The pressurep in the liquid may be obtained from the relations (see e.g. Hurley 

1969) 

and the imposition of the condition 

pas  = 0 

(4.5) 

(where C is any closed contour surrounding the cylinder) shows that co and do 
in (4.4) must satisfy the relation 

Hence the most general form for the stream function is 
co+d, = 0. (4.7) 

+ 5 d, (>+ [$- l]')-". (4.8) 
n = l  
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FIGURE 3. Values of ( a"+a2 - 1) in x2  + y2 > a2. 

P denotes the positive real number \a"+u2 - 1 k. 

FIGURE 4. Values of (fly /a2 - 1) in x2 + y2 > a2. 
P denotes the positive real number la? /a2 - 1 I *. 

On the surface of the cylinder, 

and 

a = iexp(-i(O+puj) 

= iexp(i(B-p)), 

727 

(4.9) 

so that the expansion (4.8) is complete and unique. 
The terms in the infinite series in (4.8) have been used by Barcilon & Bleistein 

(1969a, b) ,  but their determination of the square roots was incorrect and as a 
consequence the radiation condition was not satisfied (Baines 1971 a). 
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FIGURE 5 .  Model of continental shelf in z = z + iy plane. 

5. The effect of the continental shelf on a train of internal gravity waves 

(5.1) 

Suppose that the internal gravity wave 

$i = Ulk exp { - ikv-}  

is incident on the model of the continental shelf shown in figure 5. Here the line 
y = h represents the surface of the ocean, and the half lines y = 0, x < 0 and 
x = 0, y < 0 the continental shelf itself. On each of these lines the normal velocity 
must be zero (Phillips 1966, p. 165). The group velocity of the incident wave is 
in the direction of the arrow in the figure. Let 

$ = $i+$-’, (5 .2 )  

so that $‘ is the disturbance stream function, which were present as a distribution 
of sources (Green’s functions) along OE, OD and DC, of such a strength as to give 
zero total normal velocity thereon. Thus 

0 
@‘ = -2iUcosp 1 exp{-iky,cosp}GOE(x, y;  ys)dy, 

” --m 

0 + 2iUsinp/-exp{ -ilcx,sinp}G,,(x, y; x,)dx, 

- 2 i U  s i n p r  exp{-ik(x,sinp+fhcosp)}G~c~x,~;x,)dx,, (5.3) 
m 

J - W  

where GOE, GOD and GDc are the Green’s functions for sources of unit strength 
on OE, OD and DC, respectively, with each of these lines a streamline. 

To determine the G’s we first consider the case w > N .  It follows from (2.17) 
that the boundaries in the 2 and 2‘ planes are the same; and an application of the 
Schwartz-Christoffel theorem shows that the appropriate region of the 2’ plane 
is mapped onto the upper half of the 2” plane in the manner shown in figure 6, 
bv the transformation 

(5.4) 
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FIGURE 6. 2’ = d’+iy’’ plane. 

where Z“4 has its principal value and 

For a unit source a t  the point that maps to 2; we have 

1 
2n 

w = - - {log [(Z“ - 2;) ( 2  - 231). (5 .5)  

w(2’) is given implicitly by (5.4) and (5 .5) ,  W ( g )  by their complex conjugates and 
each of GoE, GOD and GDc by the limit as 2, approaches the appropriate boundary 
of 

2 
G = -- ( ~ ( 2 ~ )  - W(Z’)). (5.6) 4 

For the case w < N ,  (2.13), (5.4) and (5 .5)  show that 

1 
277. 

- 1 

w = --lo g {[ZI;(v+) - z:(~+,)I[z; (v+) - ~:k-,)I},  

w = - - log { [Z’L ( cr-) - ZL (cr,)] [ZII. (cr-) - 2: ( cr,,)]}, 

(5.7) 

(5.8) 2n 

where the function Z ; ( t )  is defined implicitly by 

and the function 2: ( t )  by 

(5.10) 

G is still given by (5.6). Hence 

1c.‘ = 1c.;@+) + $:w, (5.11) 
where 

%w+) = 4;rr exp{-iky,cosp}log{[ZI;(~+) -Z!( -y,cosp)] 

x [Z’;(V+) -~:(y,cosp)l)dy, 
Usinp 

exp { - ikx,sinp}log{[ZI;(a+) -ZI;(x,sinp)] 

x [Z’;(o+) - Z:((~,sinp)]} dx, 

+ T/- 2 x p  { - ik(x, sin p + h cos p)) log ([Z;(a+) - 2: (x, sin ,u - h cos p)] 

(5.12) 

Usinp O0 

x [,%I;( IT+) - ZE(x, sin ,u + h cos p)])  dx,, 
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and 

$'(.-) = -- exp{ -iky,cosp}log{[ZZ(a-) -Z!(yscosp)] 

x [zya-) - z;( - ys cosp)]}dy, 

exp { -ikx,sinp}log{[Z"(a-) -Z~(x,sinp)] 

x [Z!(a-)- [Z;(xssinp)]}dxs 
Usinp 

exp { - ik(xs sin ,u + h cosp)}  log ((2: (a_) 

-Z!((x,sin,u+hcosp)] [Z!((a-) -Z;(x,sinp-hcosp)]}dxs. (5.13) 

5 . i .  The functions Zi(a+) and Z!(a-) 

It follows from (5.9) and (2.7) that, when Zl; is real and positive, 

where 2 p  is real and positive. Thus, in a+ > 0, 2; is a real-valued monotonic 
function, and its values are given in figure 7.  When a+ is small, 

(5.15) 

and, when the line cr+ = 0 is crossed from a+ > 0 to a+ < 0, amp a+ increases by 
n (Hurley 1969). Hence, when a+ is a small negative quantity amp2; = 2n/3. 
It follows from (5.9) that, when a+ is real negative, 2: is the complex-valued 
function defined by 

2" = rexp{i8}, 2 ~ / 3  < 8 < 4 4 3 ,  (5.16) 

where 

and 

(5.17) 

(5.18) 

Also, Z>* = r!z exp {i6/2}. (5.19) 

Numerical values are shown in figures 7 and 8. When a+ is negative, 2; is a peri- 
odic function with period 2 hcosp, and, as cr+ is decreased by this amount, the 
contour I? shown in figure 8 is described once in the positive sense. 

To discuss 2: we need to consider separately the three regions into which the 
physical plane is divided by its boundaries and the line a- = 0. These are shown in 
figure 9. 

I n  region I, a- is negative and ZZ is the real, positive monotonic function de- 
fined by 

(5.20) 

where ZT4 is real and positive. 
Equations (5.14) and (5.20) show that the value of ZL((o-) for points in region I 
are given by z:( - 8 )  = z;(s) ( s  > 0). (5.21) 

Also, Z?( - s )  = Z?(s) Is > 0). (5.22) 
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-2 1 
FIGURE 7. Values of function .Z;(a+). 
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J -0.6 
Re 5+ 

FIGURE 8. Argand diagram of the function 5+[u+/(2hcosp)] = Z;(u+). 
Numbers on curve denote values of a+/(2h cos p).  

By examining the behaviour of ZII(r-) near its branch points, we may determine 
its values throughout regions I1 and I11 of figure 9, and establish the following 
relations. For points in regions I1 and 111, 

Zl i (s+2hcosp)  = Z';(s) ( - G o  < s < Go), (5.23) 

and Z"(s+2hcosp) = -Z>.(s) (-00 < s < 00). (5.24) 



732 D. G .  Hurley 

J / / / / / / / / /  I / / / / / / /  

111 

FIGURE 9. Definition of regions I, I1 and 111. 

5.2. Simpl$kat ion of the solution (5.12) and (5.13) 

Each of the terms in (5.12) and (5.13) has branch points for certain vaIues of CT+ 
and a-. The appropriate indentations around them may be found by the method 
given in 3 2. Also, various terms in each equation may be combined, and, making 
use of (5.21) and (5.23), we find that 

where HII( - CJ-) in the first term of (5.26) denotes the Heaviside step function, 
the subscript I1 having been added to denote that it is non-zero onIy for cr- 
negative and in region I1 of figure 9. Details of the integration paths for the vari- 
ous terms in (5.25) and (5.26) are given in table 1. 

Let (5.27) 

( 5 . 2 8 )  and 



Steady-state internal gravity wave problems 733 

Term Branch point@) of integrand Sense of indentation 

lstin(5.25) a+ifu+ > 0 Below 

2nd in (5.25) Above 

3rd in (5.25) a + i f u + > O  Above 

2nd in (5.26) {of figure 9 

Q+ + 2Mh cos p if u+ < 0 (See caption) 

cr- if u- < 0 and cr- in region I 

~ ~ C O S ~ G - L T - ~ ~ C T -  > 0 

cr- of 2Nhcosp if u- < 2hcosp 
Below if 0 < cr- < 2hcosp 
Above if u- < 0 

3rd in (5.26) 
and u- not in region I of 
figure 9 (See caption) 

cr- if 8- > 0 
4th in (5.26) 

lregion I of figure 9 
L 

TABLE 1. Indentations for the integration paths in (5.25) and (5.26). M is thenon-negative 
integer such that - 2h cos p < c+ + 2Mh cos p < 0 when Q+ < 0, and N is the non-negative 
integer such that 0 < CT- + 2Nh 00s p < 2h cos p when Q- < 2h cos p. 

Then, from (5.9) and (5.10), 

(5.29) 

and differentiation of (5 .25 )  gives 

9 
- -  
do-, C+ 

where a; = a+/(2h cos p), (5.31) 

and K = 2khcosp. (5.32) 

The integrals in (5.30) are transformed as follows. The integration path for the 
first term is displaced to the positive imaginary axis, and the integration path 
for the third term to the negative imaginary axis. In the second term the variable 
of integration is changed to &(s), so that the integration path becomes the closed 
contour I? (shown in figure 8) but is described in the negative sense. This path is 
then displaced to the interval ( -  1,O) of the real axis described twice. These 
transformations in conjunction with a similar treatment of (5.26) lead to the 
following equation for the fluid velocity V :  
V = Reflected waves 
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-4 - 2  0 1 

ReS+(i7) 

FIGURE 10. Trace of the function 5, ( i ~ )  in the Argand diagram. 
The numbers on the curve denote values of T. 

Here a, and 5- are unit vectors in the directions exp{ip} and exp{i(n-p)} 
respectively and the reflected waves are those that are obtained using the laws 
of reflexion for infinite plane surfaces (Phillips 1966, p. 176). Also, 

(TI_ = ( T - / ( ~ ~ c o s ~ ) ,  (5.34) 

and [+(ir) and [+( - ir)  are the analytic continuations of the function [+ defined 
by (5.27) onto the positive and negative imaginary axes, respectively. [+( -ir)  
is the complex conjugate of c+(ir), whose trace in the Argand diagram is shown in 
figure 10. 

5.3. Discussion of solution 

Equation (5.33) gives the fluid velocity as the sum of the reflected and the dif- 
fracted waves. Since the former gives zero normal velocity on the boundaries, so 
too should thelatter. The form of (5.33) in conjunction with (5.21) to (5.24) shows 
that this is in fact the case. 

We now show that our solution satisfies the radiation condition in the 
shadow zone above the continental shelf. The stream function $ for the total 
motion isgiven by (5.2), (5.11), (5.25) and (5.26). The &st term of (5.26) cancels 
$$ in the shadow zone, and it follows from these equations, $5.1 and table 1 
that in this zone $ must be of the form P((T+) -P((T-) for some P. Also, here 
Z:(r-) and Z:(B+) are periodic functions with period 2h cosp, so that 

m - inrra, - inrrcr- ' = n=--a0 '' cn(exp( hcosp hcosp ))' (5.35) 
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y=h y 1. 
/ / / 1 / 1 1 / / / / / / / / l 
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1 4 s. *o 
/ / /  / / 4 /  / 

T 

/ 
/ 

FIGURE 11. The lines in the physical plane on which <+ or <- vanish, and near which the 
velocities in the diffracted waves are significant when K = 2khcos p is large. 

where 

U~ing~(5.9) and (5.31), (5.36) can be written as 

(5.36) 

(5.37) 

where I' is the contour shown in figure 8, indented in such a way that the branch 
pointsat c+ = OandZ'; = Z';(t) (see(5.25))lieoutsideit.Inthisexpression,@ = i 
a t  c+ = - 1, so that the integrand has a pole of order n + 1 at this point when n 
is positive, and is regular there when n is negative. Thus 

C, = 0, n < 0, (5.38) 

so that @ = 5 C, (""p { - innV+} - exp { - iring-)); 
n=l h coap h cosp 

(5.39) 

and the Cn may be calculated from (5.37) using the calculus of residues. Equation 
(5.39) expresses -@ as the sum of waves moving to the left, so that the Sommer- 
feld radiation condition is satisfied in the region above the continental shelf. 

When K is large, the major contributions to the integrals in (5.33) are obtained 
from small values of 7, so that, by (5.15) and (5.31), the approximations 

c+(i7) = (3n7)9 exp {in/3} and c+( - i7) = (3n7)3 exp { - in/3) 

may be used therein. It is then apparent that the velocities in the diffracted 
waves will be significant only near the lines on which either C+ or c- vanishes. 
These are shown in figure 11, and are (as expected) the edges of the reflected 
waves. Also, if we express the velocities in the diffracted waves in the form 

(5.40) 
h 

UV,(C>) a++ UV,(aL) c-, 

then near the line V- = 0 we find that 

+ia- {Im exp{-K~)& 
V,(cT-) = 

3 n ( - d ) +  o ( -d)+-~+exp{in/31 

+ [ mexp ' - K7} "1). (5.41) 
e x p { - K ~ } d ~  

(-al_)Q-dexp{-in/3} o ( - - vL)%+T% 
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FIGURE 12. For legend see facing page. 



1 .o 

0.5 

- 0.5 

Steady -state internal gravity wave problems 737 

0.5 

- 0.5 I 

u 
h 0 
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FIGVRE 12. Values of the diffracted velocity V-D at various points on a line such as AA' 
shown in the insert. __ , R ~ P D ;  ---- , ImV-,. K :  (a) 0.2, (6 )  0.5, (c) 1.0, (d )  2.0, (el 5.0, 
(f) 10.0. 
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FIGURE 13. Instantaneous streamlines for K = 1. (a )  Lines on which the real part of $ is 
constant. ( b )  Lines on which the imaginary part of $is constant. 

Referring to Hurley (1970), we see that the first and second terms in (5.41) 
give the diffracted waves that occur when the wave $i is incident on the corner 
at 0 in the absence of the boundary a t  y = h, and that the third and fourth terms 
give the diffracted waves that would occur if the wave reflected from the bound- 
ary y = h were incident on the corner at 0 in the absence of the boundary at y = h. 

for various values of K (defined by (5.32)) for 
points on a line such as AA’ shown in the insert of figure 12 (a). When K is large, 
V-* is significant only when (TL is nearly zero or unity (figure 12(f)) .  As K is 
decreased, the regions in which V-D is significant increase, and for K less than 

Figure 12 gives values of 
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FIGURE 14. Energy flux above continental shelf. 

about two it is significant throughout 0 < 
shown analytically that 

< 1. In  the limit K-t  0 it may be 

V - D - t i ,  0 < 0-L < 1, 
- to ,  a’ < 0, a’ > 1. (5.42) 

This behaviour is apparent in the results for K = 0.2 (figure 12 (a)). It is interest- 
ing to note that the velocities given in (5.42) are minus the corresponding limiting 
velocities in the incident plus reflected waves. Hence, in the limit K --f 0, the 
total fluid veIocity tends to zero. 

The instantaneous streamlines for the case K = 1 are shown in figure 13. The 
fluid velocity is infinite along each of the characteristics that pass through the 
corner 0, and this leads to their being tangential to these characteristics either 
with a point of inflexion or with a cusp there, depending on whether or not the 
fluid velocity changes direction as the characteristic is crossed (see also figure 12). 
The most noticeable feature in the region above the continental shelf is the 
cellular nature of the instantaneous streamlines. Of course, our solution, which is 
based on the linearized equations of motion, is invalid near the characteristics 
on which it is singular, but it seems unlikely that this local breakdown will 
influence greatly the main features of the flow (Robinson 1970b). 

By using the method of Hurley (1970) it may be shown that the ratio of the 
mean energy flux (in the horizontal direction) above the continental shelf ps to 
the mean energy flux in the incident wave between a; = 0 and a‘ = 1 is 

- 

5 = 1 + jOw (~[uv(-l) - u(-l)v + u(-1) cos ~ a ‘  - v(-1) sin K ~ L I  
PI 

- usin K a? - v cos K a L ) d d ,  (5.43) 
where KD = u+iv, 

z c d d  and d-l) = vdaL. (5.44) IouL su”’ u(-l) = 

Numerical values are given in figure 14. When K is large, the diffracted waves are 
unimportant, and all the incident energy is transmitted above the shelf. As K 
decreases, the fraction that is transmitted decreases monotonically to zero. 
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